Home
Class 12
MATHS
Let parabolas y=x(c-x) and y=x^(2)+ax+b ...

Let parabolas `y=x(c-x)` and `y=x^(2)+ax+b` touch each other at the point `(1,0)` then `b-c=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let the parabolas y=x(c-x)and y=x^(2)+ax+b touch each other at the point (1,0), then-

Let the parabolas y=x(c-x)and y=x^(2)+ax+b touch each other at the point (1,0), then-

Let the parabolas y=x(c-x) and y=x^(2)+ax+b touch each other at the point (1,0). Then a+b+c=0a+b=2b-c=1(d)a+c=-2

Let the parabolas y=x(c-x)a n dy=x^2+a x+b touch each other at the point (1,0). Then a+b+c=0 a+b=2 b-c=1 (d) a+c=-2

Let the parabolas y=x(c-x)a n dy=x^2+a x+b touch each other at the point (1,0). Then a) a+b+c=0 , b) a+b=2 , c) b-c=1 , (d) a+c=-2

Let the parabolas y=x(c-x)a n dy=x^2+a x+b touch each other at the point (1,0). Then (a) a+b+c=0 (b) a+b=2 (c) b-c=1 (d) a+c=-2

Let the parabolas y=x(c-x)a n dy=x^2+a x+b touch each other at the point (1,0). Then (a) a+b+c=0 (b) a+b=2 (c) b-c=1 (d) a+c=-2

If the parabolas y=x^(2)+ax+b and y=x(c-x) touch each other at the point (1,0), then a+b+c=

Let the parabolas y= x^(2)+ ax +b and y =x(c-x) touch cach other at point (1,0). Then

If y=x^(3)-c and y=x^(2)+ax+b touch each other at the point (1,2) , then (|a|+|b|+|c|)/(|a+b-c|)=?