Home
Class 12
MATHS
The volume of a parallelopiped whose cot...

The volume of a parallelopiped whose coterminous edges are `2veca , 2vecb , 2 vec c ` , is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca, vecb, vecc be three unit vectors such that veca. vecb=veca.vecc=0 , If the angle between vecb and vecc is (pi)/3 then the volume of the parallelopiped whose three coterminous edges are veca, vecb, vecc is

Let veca, vecb, vecc be three unit vectors such that veca. vecb=veca.vecc=0 , If the angle between vecb and vecc is (pi)/3 then the volume of the parallelopiped whose three coterminous edges are veca, vecb, vecc is

If [veca vecbvecc]=2 find the volume of the parallelepiped whose co-teminus edges are 2veca +vecb, 2 vecb + vecc, 2 vecc + veca.

Statement 1: If V is the volume of a parallelopiped having three coterminous edges as veca, vecb , and vecc , then the volume of the parallelopiped having three coterminous edges as vec(alpha)=(veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc vec(beta)=(veca.vecb)veca+(vecb.vecb)vecb+(vecb.vecc)vecc vec(gamma)=(veca.vecc)veca+(vecb.vecc)vecb+(vecc.vecc)vecc is V^(3) Statement 2: For any three vectors veca, vecb, vecc |(veca.veca, veca.vecb, veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|=[(veca,vecb, vecc)]^(3)

If the volume of a parallelopiped, whose three coterminous edges are -12 vec i + lambda vec k; 3 vec j - vec k and 2 vec i + vec j - 15 vec k , is 546 then lambda =_______.

If V is the volume of the parallelopiped having three coterminous edges as veca,vecb and vecc , then the volume of the parallelopiped having three coterminous edges as vec(alpha)=(veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc vec(beta)=(veca.vecb)veca+(vecb.vecb)vecb+(vecb.vecc)vecc vec(gamma)=(veca.vecc)veca+(vecb.vecc)vecb+(vecc.vecc)vecc is

Volume of the parallelopiped whose adjacent edges are vectors veca , vecb , vecc is

The volume of the parallelopiped whose coterminal edges are 2i - 3j + 4k, I + 2j - 2k, 3i - j + k is

If V is the volume of the parallelepiped having three coterminous edges as veca,vecb and vecc , then the volume of the parallelepiped having three coterminous edges as vecalpha = (veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc , vecbeta=(vecb.veca)veca+(vecb.vecb)+(vecb.vecc)vecc and veclambda=(vecc.veca)veca+(vecc.vecb)vecb+(vecc.vecc)vecc is