Home
Class 12
MATHS
Consider the real-valued function satisf...

Consider the real-valued function satisfying `2f(sinx)+f(cosx)=xdot` then the (a)domain of `f(x)i sR` (b)domain of `f(x)i s[-1,1]` (c)range of `f(x)` is `[-(2pi)/3,pi/3]` (d)range of `f(x)i sR`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the real -valued function satisfyinig 2f(sinx)+f(cosx)=x. Then the domain of f(x) is

Consider the real-valued function satisfying 2f(sin x)+f(cos x)=x .then the (a)domain of f(x) is R (b)domain of f(x)is[-1,1] (c)range of f(x) is [-(2 pi)/(3),(pi)/(3)]( d)range of f(x) is R

Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot then the domain of f(x)i sR domain of f(x)i s[-1,1] range of f(x) is [-(2pi)/3,pi/3] range of f(x)i sR

Consider the real - valued function satisfying 2f(sinx) + f(cosx) = x . Then , which of the following is not true ? a)Domain of f(x) is [-1,1] b)Range of f(x) is [-(2pi)/3,pi/3] c)f(x) is one - one d)None of these

Consider the function y=f(x) satisfying the condition f(x+1/x)=x^2+1//x^2(x!=0)dot Then the (a) domain of f(x)i sR (b)domain of f(x)i sR-(-2,2) (c)range of f(x)i s[-2,oo] (d)range of f(x)i s(2,oo)

Consider the function y=f(x) satisfying the condition f(x+1/x)=x^2+1//x^2(x!=0)dot Then the a)domain of f(x)i sR b)domain of f(x)i sR-(-2,2) c)range of f(x)i s[-2,oo] d)range of f(x)i s(2,oo)

Consider the function y=f(x) satisfying the condition f(x+(1)/(x))=x^(2)+1/x^(2)(x!=0) Then the domain of f(x) is R domain of f(x) is R-(-2,2) range of f(x) is [-2,oo] range of f(x) is (2,oo)

Consider the real valued function f(x)=(x-3)/(x^2-x-6) Find the domain of f(x) .

f(x) is a real valued function f(x) = (1)/(sqrt(5x-3)) . Find the domain of f(x).

Find the domain and range of real function f if f(x)=x/|x|