Home
Class 12
MATHS
ln a quadrilateral ABCD, vec(AC) is the...

ln a quadrilateral `ABCD, vec(AC)` is the bisector of the `(vec(AB) ^^ vec(AD))` which is `(2pi)/3 , 15|vec(AC)| = 2 |vec(AB)| = 5|vec(AD)|` then `cos (vec(BA) ^^ vec(CD))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

In a quadrilateral ABCD,vec AC is the bisector of the (vec AB^^vec AD) which is (2 pi)/(3),15|vec AC|=2|vec AB|=5|vec AD| then cos(vec BA^^vec CD) is

In a quadrilateral ABCD, vec(AB) + vec(DC) =

In a quadrilateral ABCD, vec(AB) + vec(DC) =

If ABCD is a parallelogram then vec(AB) + vec(AD) + vec(CB) + vec(CD) = …………………… .

Given a parallelogram ABCD . If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c , then vec(DB) . vec(AB) has the value

Given a parallelogram ABCD . If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c , then vec(DB) . vec(AB) has the value

If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to