Home
Class 12
MATHS
If f(x) satisfies the relation f(x+y)=f(...

If `f(x)` satisfies the relation `f(x+y)=f(x)+f(y)` for all `x , y in Ra n df(1)=5,t h e n` `f(x)i sa nod dfu n c t ion` `f(x)` is an even function `sum_(n=1)^mf(r)=5^(m+1)C_2` `sum_(n=1)^mf(r)=(5m(m+2))/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) satisfies the relation f(x+y)=f(x)+f(y) for all x , y in Ra n df(1)=5,t h e n (a) f(x)i sa nod dfu n c t ion (b) f(x) is an even function (c) sum_(n=1)^mf(r)=5^(m+1)C_2 (d) sum_(n=1)^mf(r)=(5m(m+2))/3

If f(x) satisfies the relation f(x+y)=f(x)+f(y) for all x , y in R and f(1)=5,t h e n (a) f(x) is an odd function (b) f(x) is an even function (c) sum_(r=1)^mf(r)=5^(m+1)C_2 (d) sum_(r=1)^mf(r)=(5m(m+2))/3

If f(x) satisfies the relation f(x+y)=f(x)+f(y) for all x,y in R and f(1)=5, then f(x) is an odd function f(x) is an even function sum_(n=1)^(m)f(r)=5^(m+1)C_(2)sum_(n=1)^(m)f(r)=(5m(m+2))/(3)

If f(x) satisfies the relation, f(x+y)=f(x)+f(y) for all x,y in R and f(1)=5, then find sum_(n=1)^(m)f(n) . Also, prove that f(x) is odd.

If f(x) satisfies the relation, f(x+y)=f(x)+f(y) for all x,y in R and f(1)=5, then find sum_(n=1)^(m)f(n) . Also, prove that f(x) is odd.

If f(x) satisfies the relation, f(x+y)=f(x)+f(y) for all x,y in R and f(1)=5, then find sum_(n=1)^(m)f(n) . Also, prove that f(x) is odd.

If f(x) satisfies the relation, f(x+y)=f(x)+f(y) for all x,y in R and f(1)=5, then find sum_(n=1)^(m)f(n) . Also, prove that f(x) is odd.

If f(x) satisfies the relation, f(x+y)=f(x)+f(y) for all x,y in R and f(1)=5, then find sum_(n=1)^(m)f(n) . Also, prove that f(x) is odd.

If f : R to R satisfies f(x + y)=f(x)+f(y) for all x, y in R and f(1)=7 , then sum_(r=1)^n f(r)

If F :R to R satisfies f(x +y ) =f(x) + f(y) for all x ,y in R and f (1) =7 , then sum_(r=1)^(n) f(R ) is