Home
Class 12
MATHS
यदि A+B+C=pi हो तो सिद्ध कीजिए कि - (s...

यदि `A+B+C=pi` हो तो सिद्ध कीजिए कि -
`(sin2A+sin2B+sin2C)/(cosA+cosB+cosC-1)=8"cos"A/2"cos"B/2"cos"C/2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (sin 2A+sin 2B + sin 2C)/(cos A + cos B + cos C-1) = 8 cos(A/2) cos( B/2) cos( C/2)

Prove that : (sin 2A+sin 2B + sin 2C)/(cos A + cos B + cos C-1) = 8 cos(A/2) cos( B/2) cos( C/2)

(sin2A+sin2B+sin2C)/(cos A+cos B+cos C-1)=((lambda)/(2))(cos A)/(2)(cos B)/(2)(cos C)/(2) then lambda=

If A+B+C=0 then show that 1+cosA+cosB+cosC=4"cos"A/2"cos"B/2"cos"C/2

If A + B + C = 180 ^ @ then (sin 2A + sin 2B + sin 2C) / (cosA + cosB + cosC - 1) =

If A+B+C = 180^@ then (sin 2A + sin 2B + sin 2C) / (cosA + cosB + cosC - 1) =

cos^2 A + cos^2 B +cos^2 C=1+2cosA cosB cosC .

If A + B + C= pi , prove that sin 2A + sin 2B -sin 2C =4cos A cos B sin C