Home
Class 11
MATHS
sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=co...

`sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin(n+1)x sin(n+2)x+cos(n+1)x cos(n+2)x=c

sin (n +1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

sin (n +1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

sin (n +1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

sin (n +1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

Prove the following: sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x

Prove that: sin(n+1)A sin(n+2)A+cos(n+1)A cos(n+2)A=cos A

Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

Prove that: sin (n + 1) x sin (n + 2)x + cos (n + 1) x cos (n + 2) x = cos x

Solve for x the equation |(a^(2),a,1),(sin(n+1)x,sin nx,sin(n-1)x),(cos(n+1)x,cosn x,cos(n-1)x)|=0