Home
Class 12
MATHS
The number of ordered pairs (a,b) where ...

The number of ordered pairs `(a,b)` where a,b are integers satisfying the inequality min `(x ^(2) +(a-b) x + (1-a-b)) gtmax (-x ^(2) +(a+b)x-(1+a+b)AA x in R,` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of integers satisfying the inequation (x^(2)-x-1)(x^(2)-x-7)<-5, are 4 (b) 2 (c) 1(d)0

Number of integers satisfying the inequation (x^2-x-1)(x^2-x-7)<-5, are 4 (b) 2 (c) 1 (d) 0

The least natural number satisfying the inequation (x-1)/x-(x+1)/(x-1)<2 is 0 (b) 1 (c) 2 (d) 3

The least natural number satisfying the inequation (x-1)/(x)-(x+1)/(x-1)<2 is 0 (b) 1 (c) 2 (d) 3

The number of ordered pairs (a,b) of positive integers such that (2a-1)/b and (2b-1)/a are both integers is

The number of ordered pair (x ,\ y) satisfying correspondence C_1 is 1 b. 2 c. 3 d. 4

If a!=(+-)b and a+b!=1 then find the value of x satisfying the equation (a^(4)-2a^(2)b^(2)+b^(4))^(x-1)=(a-b)^(2x)(a+b)^(-2)

If all values of x in (a, b) satisfy the inequality tan x tan 3x lt -1, x in (0, (pi)/(2)) , then the maximum value (b, -a) is :

If all values of x in (a, b) satisfy the inequality tan x tan 3x lt -1, x in (0, (pi)/(2)) , then the maximum value (b, -a) is :

If all values of x in (a, b) satisfy the inequality tan x tan 3x lt -1, x in (0, (pi)/(2)) , then the maximum value of (b-a) is :