Home
Class 12
MATHS
If a,b,c are non-zero real numbers, then...

If a,b,c are non-zero real numbers, then the minimum value of the expression `((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2))` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are non-zero real numbers,then the minimum value of the expression (((a^(4)+3a^(2)+1)(b^(4)+5b^(2)+1)(c^(4)+7c^(2)+1))/(a^(2)b^(2)c^(2))) is not divisible by prime number.

If a ,b ,c are non-zero real numbers, then the minimum value of the expression (((a^4+ 3a^2+1)(b^4+5b^2+1)(c^4+7c^2+1))/(a^2b^2c^2)) is not divisible by prime number.

If a ,b ,c are non-zero real numbers, then find the minimum value of the expression (((a^4+ 3a^2+1)(b^4+5b^2+1)(c^4+7c^2+1))/(a^2b^2c^2)) which is not divisible by prime number.

If a ,b ,c are non-zero real numbers, then find the minimum value of the expression (((a^4+ 3a^2+1)(b^4+5b^2+1)(c^4+7c^2+1))/(a^2b^2c^2)) which is not divisible by prime number.

If a, b, c are non-zero than minimumm value of expression (((a^(4)+3a^(2)+1)(b^(4)+5b^(2)+1)(c^(4)+7c^(2)+1))/(a^(2)b^(2)c^(2))) equals pqr find p + q+ r .

If a, b, c are non-zero than minimumm value of expression (((a^(4)+3a^(2)+1)(b^(4)+5b^(2)+1)(c^(4)+7c^(2)+1))/(a^(2)b^(2)c^(2))) equals pqr find p + q+ r .

If a,b,c are non-zero real numbers and a+b+c=0, then the value of (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab) is (A)0(B)2(D)4(C)3

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to