Home
Class 9
MATHS
In a quadrilateral ABCD the linesegment ...

In a quadrilateral ABCD the linesegment bisecting `angleC and angleD` meet at E. Prove that `angleA+angleB=2angleCED.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a quadrilateral ABCD, the bisector of angleC & angleD intersect at O. Prove that angleCOD=(1)/(2)(angleA+angleB)

If a quadrilateral ABCD, the bisector of angleC angleD intersect at O. Prove that angleCOD=(1)/(2)(angleA+angleB)

If a quadrilateral ABCD, the bisector of angleC angleD intersect at O. Prove that angleCOD=(1)/(2)(angleA+angleB)

If a quadrilateral ABCD, the bisector of angleC angleD intersect at O. Prove that angleCOD=(1)/(2)(angleA+angleB)

If a quadrilateral ABCD, the bisector of angleC angleD intersect at O. Prove that angleCOD=(1)/(2)(angleA+angleB)

In a quadrilateral ABCD, AO and BO are the bisectors of angleA and angleB respectively. Prove that angleAOB=1/2(angleC+angleD).

In a quadrilateral ABCD, AO and BO are bisectors of angleA and angle B respectively. Prove that angleAOB=1/2(angleC+angleD)

In a Quadrilateral ABCD, angleA +angleB = 200^@ then angleC +angleD = _____

In triangleABC , AD bisects angleA and angleC>angleB prove that angleADB>angleADC .