Home
Class 11
PHYSICS
Let vec(a), vec(b), vec(c) be vectors of...

Let `vec(a), vec(b), vec(c)` be vectors of length `3, 4, 5` respectively. Let `vec(a)` be perpendicular to `vec(b)+vec(c), vec(b)` to `vec(c)+vec(a)` and `vec(c)` to `vec(a)+vec(b)`. Then `|vec(a)+vec(b)+vec(c)|` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a,vec b,vec c be vectors with lengths 3,4,5 respectively.Let vec a be perpendicular to vec b+vec c,vec b be perpendicular to vec c+vec a and vec c be perpendicular to vec a+vec b Tehn find the value of |vec a+vec b+vec c|

[vec(a)vec(b)vec(c )]=[vec(b)vec(c )vec(a)]=[vec(c )vec(a)vec(b)] .

If vec(a) , vec(b), vec(c) are unit vectors such that vec(a) is perpendicular to the plane of vec(b), vec(c) , and the angle between vec(b) and vec(c) is (pi)/(3) Then, what is |vec(a)+vec(b)+vec(c)| ?

Let vec a,vec b and vec c are vectors of magnitude 3,4,5 respectively.If vec a is perpendicular to vec b+vec c,vec b is perpendicular to vec c+vec a and vec c is perpendicular to vec a+vec b then find the magnitude of vec a+vec b+vec c

If vec(a).vec(b) and vec(c ) are unit vectors such that vec(a) is perpendicular to the plane of vec(b) , vec(c ) and the angle between vec(b) and vec(c ) is (pi)/(3) . Then what is |vec(a) +vec(b)+vec(c )| ?

Let vec a, vec b and vec c of magnitudes 3,4 and 5 repectively. If vec a is perpendicular to (vec b + vec c), vec b is perpendicular to (vec c + vec a) and vec c is perpendicular to (vec a + vec b) , then the magnitude of vec a + vec b + vec c is

Let vec(a).vec(b) and vec(c ) be three mutually perpendicular vectors each of unit magnitude. If vec(A) = vec(a) + vec(b) + vec(c ),  vec(B) = vec(a)- vec(b) + vec(c ) and vec(C ) = vec(a) - vec(b) - vec(c ) , then which one of the following is correct?

If vec(a), vec(b), vec(c ) are unit vectors such that vec(a) + vec(b) + vec(c )= vec(0), " then " vec(a).vec(b) + vec(b).vec(c ) + vec(c ).vec(a) =