Home
Class 12
MATHS
If f(x)=lambda|sinx|+lambda^2|cosx|+g(la...

If `f(x)=lambda|sinx|+lambda^2|cosx|+g(lambda)` has a period = `pi/2` then find the value of `lambda`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=lambda|sinx|+lambda^(2)|cosx|+g(lambda) has period equal to (pi)/(2) if lambda is :

The period of the function f(x) = lambda| sin x| + lambda^(2) | cos x| + g (lambda) is (lambdai)/(2) , if lambda is

If the equation x ^2+2(lambda+1)x+lambda^2+lambda+7=0 has only negative roots, then the least value of lambda equals__________.

If the equation x^(2)+2(lambda+1)x+lambda^(2)+lambda+7=0 has only negative roots,then the least value of lambda equals

If the equation x ^2+2(lambda+1)x+lambda^2+lambda+7=0 has only negative roots, then the least value of lambda equals__________.

If the equation x ^2+2(lambda+1)x+lambda^2+lambda+7=0 has only negative roots, then the least value of lambda equals__________.

If the equation cos (lambda "sin" theta) = "sin" (lambda "cos" theta) has a solution in [0, 2pi] , then the smallest value of lambda , is

If the equation cos (lambda "sin" theta) = "sin" (lambda "cos" theta) has a solution in [0, 2pi] , then the smallest value of lambda , is

Let f(x,y) = {(x,y): y^(2) le 4x,0 le x le lambda} and s(lambda) is area such that (S(lambda))/(S(4)) = (2)/(5) . Find the value of lambda .