Home
Class 11
PHYSICS
A source is moving across a circle given...

A source is moving across a circle given by the equation `x^(2) + y^(2) = R^(2)` with constant speed `v_(S) = (330pi)/(6sqrt(3))m//s`. In clockwise sense. A detector is stationary at the point `(2R, 0) w.r.t.` the centre of the circle. The frequency emitted by the source is `f_(S)`.
(a) What are the co-ordinates of the source when the detector records the maximum and minimum frequencies. Take speed of sound `v = 330 m//s`.

Promotional Banner

Similar Questions

Explore conceptually related problems

A source is moving along a circle X^2 + Y^2 = R^2 with constant speed V_s = (330pi)/(6 sqrt3) m/s in clockwise direction while on observer is stationary at point (2R,0) with respect to the centre of circle frequency emitted by the source is f [velocity of sound V= 330 m/s] Maximum frequency heard by observer

A source is moving along a circle X^2 + Y^2 = R^2 with constant speed V_s = (330pi)/(6 sqrt3) m/s in clockwise direction while on observer is stationary at point (2R,0) with respect to the centre of circle frequency emitted by the source is f [velocity of sound V= 330 m/s] Maximum wave length received observer

A detector is released from rest over a source of sound of frequency f_(0) = 10^(3) Hz . The frequency observed by the detector at time t is plotted in the graph. The speed of sound in air is (g = 10 m // s^(2) )

A detector is released from rest over a source of sound of frequency f_(0) = 10^(3) Hz . The frequency observed by the detector at time t is plotted in the graph. The speed of sound in air is (g = 10 m // s^(2) )