Home
Class 12
MATHS
Locus of the point of intersection of pe...

Locus of the point of intersection of perpendicular tangents to the circle `x^(2)+y^(2)=16` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Locus of the point of intersection of perpendicular tangents to the circles x^(2)+y^(2)=10 is

Locus of the point of intersection of perpendicular tangents to the circle x^(2)+y^(2)=10 is

Locus of the point of intersection of perpendicular tangents to the circles x^(2)+y^(2)=10 is

Find the locus of the point of intersection of perpendicular tangents to the circle x^(2) + y^(2)= 4

Find the locus of the point of intersections of perpendicular tangents to the circle x^(2) +y^(2) =a^(2)

The locus of the point of intersection of perpendicular tangents to the circles x^(2)+y^(2)=a^(2) and x^(2)+y^(2)=b^(2) , is

The locus of the point of intersection of perpendicular tangents to the circles x^(2)+y^(2)=a^(2) and x^(2)+y^(2)=b^(2) , is

STATEMENT-1 : The agnle between the tangents drawn from the point (6, 8) to the circle x^(2) + y^(2) = 50 is 90^(@) . and STATEMENT-2 : The locus of point of intersection of perpendicular tangents to the circle x^(2) + y^(2) = r^(2) is x^(2) + y^(2) = 2r^(2) .

STATEMENT-1 : The agnle between the tangents drawn from the point (6, 8) to the circle x^(2) + y^(2) = 50 is 90^(@) . and STATEMENT-2 : The locus of point of intersection of perpendicular tangents to the circle x^(2) + y^(2) = r^(2) is x^(2) + y^(2) = 2r^(2) .

The locus of the point of intersection of the perpendicular tangents to the circle x^(2)+y^(2)=a^(2), x^(2)+y^(2)=b" is "