Home
Class 10
MATHS
Fibonacci sequence is defined as follows...

Fibonacci sequence is defined as follows :
`a_(1)=a_(2)=1` and ` a_(n)=a_(n-2)+a_(n-1)`, where `n gt 2`. Find third, fourth and fifth terms.

Promotional Banner

Similar Questions

Explore conceptually related problems

The Fibonacci sequence is defined by 1=a_(1)=a_(2) and a_(n)=a_(n-1)+a_(n-2),n>2 Find (a_(n+1))/(a_(n)),f or n=5

The Fibonacci sequence is defined by 1=a_(1)=a_(2) and a_n =a_(n-1)+a_(n-2) , n gt 2 Find (a_(n+1))/a_n for n = 1, 2, 3, 4, 5

The Fibonacci sequence is defined by 1=a_(1)=a_(2) and a_n =a_(n-1)+a_(n-2) , n gt 2 Find (a_(n+1))/a_n for n = 1, 2, 3, 4, 5

The Fibonacci sequence is defined by 1=a_(1)=a_(2) and a_n =a_(n-1)+a_(n-2) , n gt 2 Find (a_(n+1))/a_n for n = 1, 2, 3, 4, 5

The Fibonacci sequence is defined by 1 = a_(1) = a_(2) and a_(n) = a_(n - 1) + a_(n - 2),n gt 2 . Find a_(n + 1)/a_(n) , for n = 1, 2, 3, 4, 5,

The Fibonacci sequence is defined by 1=a_(1)=a_(2) and a_(n)=a_(n-1)+a_(n-2),n>2 Find (a_(n+1))/(a_(n)) for n=1,2,3,4,5

A sequence is defined as follows : a_(1)=3, a_(n)=2a_(n-1)+1 , where n gt 1 . Where n gt 1 . Find (a_(n+1))/(a_(n)) for n = 1, 2, 3.