Home
Class 12
MATHS
If f(x) = [2 + 5|n| sin x], where n in I...

If `f(x) = [2 + 5|n| sin x]`, where `n in I` has exactly 9 points of non-derivability in `(0, pi)`, then possible values of n are (where [x] dentoes greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

If n in N , the value of int_(0)^(n) [x] dx (where [x] is the greatest integer function) is

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

When n in N , the value of int_0^n [x] dx , where [x] is the greatest integer function, is :

Find the value of sum_(n=8)^100[{(-1)^n*n)/2] where [x] greatest integer function

Let x=(5+2sqrt6)^(n),ninN , then find the value of x-x^(2)+x[x] , where [.] denotes greatest integer function.

Let x=(5+2sqrt6)^(n),ninN , then find the value of x-x^(2)+x[x] , where [.] denotes greatest integer function.

If f(x)=sin((pi)/(3)[x]-x^(2)) then the value of f(sqrt((pi)/(3))) is (where [x] denotes the greatest integer function )

Number of points of non-differerentiable of f(x)=sin pi(x-[x])"in "(-pi//2,[pi//2). Where [.] denotes the greatest integer function is

Number of points of non-differerentiable of f(x)=sin pi(x-[x])"in "(-pi//2,[pi//2). Where [.] denotes the greatest integer function is