Similar Questions
Explore conceptually related problems
Recommended Questions
- Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1...
Text Solution
|
- Prove that C(n,r)+C(n-1,r)+C(n-2,r)+......+C(r,r)=C(n+1,r+1)
Text Solution
|
- Prove that ((n-1)!)/((n-r-1)!)+r.((n-1)!)/((n-r)!)=(n!)/((n-r)!)
Text Solution
|
- If 1lt=rlt=n , then \ n^(n-1)Cr=(n-r+1)\ ^n C(r-1)dot
Text Solution
|
- (ii) (n!)/((n-r)!r!)+(n!)/((n-r+1)!(r-1)!)=((n+1)!)/(r!(n-r+1)!)
Text Solution
|
- Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1...
Text Solution
|
- Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). ...
Text Solution
|
- Prove that : (i) (n!)/(r!)=n(n-1)(n-2)...(r+1) (ii) (n-r+1)*(n!)...
Text Solution
|
- Prove that .^(n)C(r )+.^(n-1)C(r )+..+.^(r )C(r )=.^(n+1)C(r+1)
Text Solution
|