Home
Class 11
MATHS
Let T(n) be the number of all possible t...

Let `T_(n)` be the number of all possible triangles formed by joining vertices of an n-sided regular polygon. If `T_(n+1)-T_(n)=19` then the value of n, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let T_(n) be the number of all possible triangles formed by joining vertices of a n-side regular polygon . If T_(n+1)-T_(n)=10 ,then the value of n is -

Let T_(n) be the number of all possible triangles formed by joining vertices of an n - sided regular polygon . IF T_(n+1)-T _n=10 then the value of n is -

Let T_n be the number of all possible triangles formed by joining vertices of an n - sided regular polygon . If T_(n+1)-T_n=10 , then the value of n is :

Let T_n be the number of all possible triangles formed by joining vertices of an n-sided regular polygon. If T_(n+1)-T_n=""10 , then the value of n is (1) 5 (2) 10 (3) 8 (4) 7

Let T_n be the number of all possible triangles formed by joining vertices of an n-sided regular polygon. If T_(n+1)-T_n=""10 , then the value of n is (1) 5 (2) 10 (3) 8 (4) 7

Let T_n be the number of all possible triangles formed by joining vertices of an n-sided regular polygon. If T_(n+1)-T_n=""10 , then the value of n is (1) 5 (2) 10 (3) 8 (4) 7

Let T_n be the number of all possible triangles formed by joining vertices of an n-sided regular polygon. If T_(n+1)-T_n=""10 , then the value of n is (1) 5 (2) 10 (3) 8 (4) 7

Let T_n be the number of all possible triangles formed by joining vertices of an n-sided regular polygon. If T_(n+1)-T_n=""10 , then the value of n is (1) 5 (2) 10 (3) 8 (4) 7