Home
Class 12
MATHS
If the equation tan (P cot x)=cot (P tan...

If the equation `tan (P cot x)=cot (P tan x)` has a solution in `x in (0, pi)-{pi/2}`, then prove that `P le pi/4`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation tan 2x = -cot (x+pi/6) .

If tan (cot x) = cot (tan x) , prove that : sin 2x = 4/((2n+1) pi)

Solve the equation tan(x+(pi)/(4))=2cot x-1

Solve the equation tan2x=-cot(x+(pi)/(6))

tan^(-1) (cot x) +cot^(-1)(tan x) =pi -2x

solve the equation cot^-1 x + tan^-1 3 = pi/2

solve the equation cot^-1 x + tan^-1 3 = pi/2

tan ^(-1) (cot x) + cot ^(-1) (tan x) =(pi)/(4)