Home
Class 11
MATHS
If f(9)=9,f^(prime)(9)=4,t h e n("lim")(...

If `f(9)=9,f^(prime)(9)=4,t h e n("lim")_(x->9)(sqrtf(x)-3)/(sqrtx-3)=` ___________.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(9)=9,f'(9)=4,then(lim)_(x rarr9)(sqrt(f(x))-3)/(sqrt(x)-3)=

If f(9)=9,f'(9)=4 , then evaluate lim_(xto9)(sqrtf(x)-3)/(sqrtx-3) .

If f(9) =9, f^(')(9) = 4 , then lim_(x rarr 9)(sqrt(f(x))-3)/(sqrtx - 3) =

If f(9)=9 , f'(9)= 4 then lim _ (x rarr9) (sqrt f(x) -3)/(sqrt(x)-3) =_____.

If f(9)=9 and f'(9)=1 then lim_(x rarr 9) (3-sqrt(f(x)))/(3-sqrtx)

If f (9) = 9, f '(9) = 1, then lim_(x rarr 9) (8-sqrt(f(x)))/(3-sqrtx) =

If f(9)=9 ,f'(9)=4, underset(xrarr9)"Lt" (sqrt f(x)-3)/(sqrtx-3)=?

If f(9)=9" and "f'(9)=4," then "underset(xto9)("lim")(sqrt(f(x))-3)/(sqrt(x)-3)=

If f(9) = 9, f'(9) = 4, then the value of lim_(xrarr9)(sqrt(f(x))-3)/(sqrt(x)-3) is