Home
Class 11
MATHS
Let alpha, beta be the roots of x^2 - ax...

Let `alpha, beta` be the roots of `x^2 - ax + b = 0,` where `alpha and beta in R.` If `alpha + 3beta = 0,` then
(A) `3 a^2 + 4b =0`
(B) `3 b^2 + 4a = 0`
(C) `b lt 0`
(D) `a lt 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

IF alpha , beta are the roots of ax ^2 + bx + c=0 then ( a alpha + b )^(-3) + ( a beta + b ) ^(-3)=

IF alpha , beta are the roots of ax ^2 + bx +c=0 then ((alpha )/( a beta + b) )^(3) - ( ( beta )/( a alpha + b )) ^(3)=

IF alpha , beta are the roots of x^2 - ax +b=0 , then the whose roots are (alpha + beta ) /( alpha ) , (alpha + beta)/( beta) is

If alpha,beta be the roots of ax^(2)+bx+c=0,c!=0 , alpha+beta=(-b)/(a) and alpha beta=(c)/(a) , then alpha^(3)+beta^(3)=

If alpha and beta are the roots of the equation ax^2+bx+c=0 where alpha 0 then (a alpha +b)(a beta +b) is equal to

If alpha , beta are the roots of ax^2+bx +c=0 then (a alpha + b)^(-2)+( a beta + b)^(-2) =

IF alpha , beta are the roots of ax^2+bx +c=0 then (a alpha + b)^(-2)+( a beta + b)^(-2) =

If alpha, beta are roots of the equation 2x^2 + 6x + b = 0 (b < 0), then alpha/beta+beta/alpha is less than

If alpha,beta,gamma are the roots of x^3+ax+b =0, then the value of alpha^3+beta^3+gamma^3