Home
Class 12
MATHS
If y=sin(sinx) then prove that (d^2y)/...

If `y=sin(sinx)` then prove that
`(d^2y)/(dx^2)+tanx. (dy)/(dx)+y cos^2x=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin(sinx) , prove that (d^2y)/(dx^2)+tanxdot(dy)/(dx)+y\ cos^2x=0 .

If y=sin(sinx) , prove that (d^2y)/(dx^2)+tanxdot(dy)/(dx)+y\ cos^2x=0 .

If y=sin(sinx) , prove that (d^2y)/(dx^2)+tanxdot(dy)/(dx)+y\ cos^2x=0 .

If y=sin (sinx) prove that (d^(2)y)/(dx^(2)) + "tan x" (dy)/(dx) + y cos^(2) x =0 .

If y=sin(sin x), prove that (d^(2)y)/(dx^(2))+tan x(dy)/(dx)+y cos^(2)x=0

If y=sin(sin x), prove that (d^(2)y)/(dx^(2))+tan x(dy)/(dx)cos^(2)x=0

If y="sin"(sinx),"prove that" (d^2y)/(dx^2)+tanx(dy)/(dx)+ycos^2x=0.

If y="sin"(logx), then prove that (x^2d^2y)/(dx^2)+x(dy)/(dx)+y=0

If y="sin"(sinx),"p r o v et h a t" (d^2y)/(dx^2)+tanx(dy)/(dx)+ycos^2x=0.

If y=cos (sin x) , show that (d^2y)/(dx^2)+tan x""(dy)/(dx)+y cos^2 x=0