Home
Class 10
MATHS
(cosAcosecA-sinAsecA)/(cosA+sinA)=cosecA...

`(cosAcosecA-sinAsecA)/(cosA+sinA)=cosecA-secA`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (cosA-sinA+1)/(cosA+sinA-1) = cosecA+cotA

(cos2A)/(secA)+(sin2A)/(cosecA)=cosA

(cos2A)/(secA)+(sin2A)/(cosecA)=cosA

Prove the following : (cosA+sinA)/(cosA-sinA)-(cosA-sinA)/(cosA+sinA) = 2tan2A

Prove the following identities. where the angles involved are acute angles for which the expressions are defined. (cosA-sinA+1)/(cosA+sinA-1)=cosecA+cotA , using the identity cosec^(2)A=1+cot^(2)A .

Prove the following identities, where the angles involved are acute angles for which the expressions are defined. : (cosA-sinA+1)/(cosA+sinA-1)=cosecA+cotA, using the identity coses^2A=1+cot^2A)

Prove the following identities,where the angles involved are acute angles for which the expressions are defined. (v) (cosA-sinA+1)/(cosA+SinA-1)=cosecA+cotA.

((cosA+sinA)/(cosA-sinA))-((cosA-sinA)/(cosA+sinA))=

(1+cotA+tanA)(sinA-cosA)=(secA)/(cosec^2A)-(cosecA)/(sec^2A)

(sinA)/(1+cosA)+(1+cosA)/sinA=2cosecA