Home
Class 12
MATHS
If f(x)=int(0)^(pi)(t sin t dt)/(sqrt(1+...

If `f(x)=int_(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t))` for `0lt xlt (pi)/2` then

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(2 pi)[sin t]dt

If f(x) = int_0^pi (t sint dt) / (sqrt(1+tan^2xsin^2t)) for 0 < x < pi/2 , then (a) f(0^+)=-pi (b) f(pi/4)=(pi^2)/8 (c) f is continuous and differentiable in (0,pi/2) (d) f is continuous but not differentiable in (0,pi/2)

If f(x) = int_0^pi (t sint dt) / (sqrt(1+tan^2xsin^2t)) for 0 < x < pi/2 , then (a) f(0^+)=-pi (b) f(pi/4)=(pi^2)/8 (c) f is continuous and differentiable in (0,pi/2) (d) f is continuous but not differentiable in (0,pi/2)

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

f(x)=int_(0)^(x^(2))((sin^(-1)sqrt(t))^(2))/(sqrt(t))dt

If f(x)=e^(x)+int_(0)^(sin x)(e^(t)dt)/(cos^(2)x+2t sin x-t^(2))AA x in(-(pi)/(2),(pi)/(2)),then

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

F(x)= int_(0)^(x)(cost)/((1+t^(2)))dt0lt=xlt=2pi . Then