Home
Class 11
MATHS
If X={4^(n)-3n-1:n in N} and {9(n-1):n i...

If `X={4^(n)-3n-1:n in N} and {9(n-1):n in N}`, the prove that `X sub Y`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A={4^(n)-3n-1:n in N) and B={9(n-1):n in N} then

If X={8^(n)-7n-1,n in N} and Y={49(n-1):n inN}, then prove that X sube Y .

If X={8^(n)-7n-1,n in N} and Y={49(n-1):n inN}, then prove that X sube Y .

If X={4^(n)-3n-1 : n in N} and Y={9(n-1) : n in N} , then

If X={4^(n)-3n-1 : n in N} and Y={9(n-1) : n in N} , then

If X={4^(n)-3n-1 : n in N} and Y={9(n-1) : n in N} , then

If X={8^(n)-7n-1,n in N} and Y={49(n-1);n in N}, then prove that X is a subset of Y

If X={4^(n)-3n-1,ninN}andY={9(n-1):ninN}," then "XcapY=

If X= {8^n-7n-1,n in N} and Y= {49(n-1);ninN} , then prove that X is a subset of Y