Home
Class 12
MATHS
The value of sum Sigma(n=1)^(13) (i^n + ...

The value of sum `Sigma_(n=1)^(13) (i^n + i^(n+1))` where `i= sqrt(-1)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(n= 1)^(13) (i^(n) + i^(n + 1)) , where i=sqrt(-1) is

The value of sum sum_(n=1)^(13)(i^n+i^(n+1)) ,where i=sqrt(-1) equals

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

The value of the sum sum_(n=1)^13(i^n+i^(n+1)) , where i= sqrt(-1) , equals