Home
Class 11
MATHS
f(x)=e^x-e^(-x)-2sinx-2/3x^3dot Then the...

`f(x)=e^x-e^(-x)-2sinx-2/3x^3dot` Then the least value of `n` for which `(d^n)/(dx^n)f(x)(""|)_(x=0)i snon z e roi s` 5 (b) 6 (c) 7 (d) 8

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=e^x-e^(-x)-2sinx-2/3x^3dot Then the least value of n for which (d^n)/(dx^n)f(x)(""|)_(x=0)i snon z e roi s (a) 5 (b) 6 (c) 7 (d) 8

f(x)=e^(x)-e^(-x)-2sin x-(2)/(3)x^(3). Then the least value of n for which (d^(n))/(dx^(n))f(x)|_(x=0) is nonzero is 5(b)6(c)7(d)8

f(x)=e^(x)-e^(-x)-2 sin x -(2)/(3)x^(3). Then the least value of n for which (d^(n))/(dx^(n))f(x)|underset(x=0) is nonzero is

f(x)=e^(x)-e^(-x)-2 sin x -(2)/(3)x^(3). Then the least value of n for which (d^(n))/(dx^(n))f(x)|underset(x=0) is nonzero is

f(x)=e^(x)-e^(-x)-2 sin x -(2)/(3)x^(3). Then the least value of n for which (d^(n))/(dx^(n))f(x)|underset(x=0) is nonzero is a. 5 b. 6 c. 7 d. 8

If f(x)=|x^nn !2cosxcos(npi)/2 4sinxsin(npi)/2 8| then find the value of (d^n)/(dx^n)([f(x)])_(x=0)dot(n in z)dot

If f(x)=|x^nn !2cosxcos(npi)/2 4sinxsin(npi)/2 8| then find the value of (d^n)/(dx^n)([f(x)])_(x=0)dot(n in z)dot

The least value of n such that (n-2)x^(2)+8x+n+4>0, where n e N ,

Let f_(n) (x) be the nth derivative of f(x), The least value of n so that f_(n)=f_(n+1) where f(x)=x^(2)+e^(x) is a)4 b)5 c)2 d)3