Home
Class 12
MATHS
If |z-3+i|=4 determine the locus of z....

If `|z-3+i|=4` determine the locus of z.

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-3+ i|=4 , then the locus of z is

If |z-3+i|=4 , then the locus of z is

If |z-3+i| = 4 then the locus of z = x +iy is

Match the following {:(I.,"If |z-3+i|=4 then the locus of z is ","a)"x^2+y^2-6x+2y-6=0),(II.,"If |z-1|=2|z-3|then the locus of z is","b)"3x^2+3y^2-22x+35=0),(III.,"If |z-i|=|z+i|then the locus of z is","c)"y=0),(IV.,"If "|z-1|^2+|z+1|^2=4"then the locus of z is","d)"x^2+y^2=1):}

If abs(z-3+ i) = 4 then, the locus of z is

If |z -2 - 3i| = 5 then the locus of z = x +iy is

The point P represnets a complex number z in the Argand plane. If the amplitude of z is (pi)/(4) , determine the locus of P.

If |z+i|^2-|z-i|^2=3 then the locus of z is

If |z+3i|+|z-i|=8 , then the locus of z, in the Argand plane, is

If |z+3i|+|z-i|=8 , then the locus of z, in the Argand plane, is