Home
Class 12
MATHS
f(x)={(tanx)/x , x!=0 1, x=0...

`f(x)={(tanx)/x , x!=0 1, x=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = (2x+ tanx)/(x) , x!=0 , is continuous at x = 0, then f(0) equals

If f(x) = (2x+ tanx)/(x) , x!=0 , is continuous at x = 0, then f(0) equals

Let be a function defined by f(x)={{:(tanx/x", "x ne0),(1", "x=0):} Statement-1: x=0 is a point on minima of f Statement-2: f'(0)=0

Let be a function defined by f(x)={{:(tanx/x", "x ne0),(1", "x=0):} Statement-1: x=0 is a point on minima of f Statement-2: f'(0)=0

If f(x)={((tanx)/(sinx)",", x ne 0),(1",", x =0):} then f(x) is

Let f(x) = {:{((3x+4tanx)/x, x ne0),(k, x = 0):} then f is continuous at x = 0 for

Let f(x) = (1-tanx)/(4x-pi), x != (pi)/4, x in [0,(pi)/2] . If f(x) is continuous in [0,(pi)/2] , then f((pi)/(4)) is

Let f(x) = (1-tanx)/(4x-pi), x != (pi)/4, x in [0,(pi)/2] . If f(x) is continuous in [0,(pi)/2] , then f((pi)/(4)) is

Let f be a function defined by f(x)={{:((tanx)/(x)",",x ne0),(1",",x=0):} Statement -I x=0 is point of minimum of f Statement II : f'(0)=0

Let f(x)= {:{((3|x|+4tanx)/x, x ne 0),(k , x =0):} Then f(x) is continuous at x = 0 for ,