Home
Class 11
MATHS
if x = a cos^3 theta sin^2 theta and y ...

if ` x = a cos^3 theta sin^2 theta and y = a cos^2 theta sin^3 theta` and `(x^2 + y^2)^p/(xy)^q` is independent of `theta`, then (A) `4p=5q` (B) `5p=4q` (C) `p+q=9` (D) `pq=20`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = acos^(3)theta sin^(2)theta , y = asin^(3)theta cos^(2)theta and (x^(2) + y^(2))^(p)/(xy)^(q)(p,q in N) is independent of theta , then :

If x = a cos^(3) theta sin^(2) theta,y = a sin^(3) theta cos^(2) thea and (x^(2)+y^(2))^(p)/((xy)^(q)),(p,q in N) is independent of theta then

If x=a cos^(3) theta sin^(2) theta,y = a sin^(3) theta cos^(2) theta and ((x^(2)+y^(2))^(p))/((xy)^(q))(p,q in N) is independent of theta , the

If x=a cos^(3) theta sin^(2) theta, y= a sin^(3) theta cos^(2) theta and ((x^(2)+y^(2))^(p))/((xy)^(q))(p, q, in N) is independent of theta , then

If p=a cos^(2)theta sin theta and q=a sin^(2)theta cos theta then (((p^(2)+q^(2))^(3))/(p^(2)q^(2)) is

Solve : cos p theta = sin q theta.

If p=(2sin theta)/(1+cos theta+sin theta), and q=(cos theta)/(1+sin theta) , then

If p=(2sin theta)/(1+cos theta+sin theta), and q=(cos theta)/(1+sin theta) , then