Home
Class 12
MATHS
intloge [x] dx equals ([ - ] denotes gre...

`intlog_e [x] dx` equals ([ - ] denotes greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)[(x)/(sinx)]dx equals to, ([.] denotes greatest integers function)

The value of int _(-1) ^(3) (|x-2 |+[x]) dx is equal to (where [**] denotes greatest integer function)

The value of int_(0)^(15)[x]^(3)dx equals, where [. ] denote the greatest integer function

int_(pi/2)^(3pi/2) [2sinx]dx is equal to [x] denotes the greatest integer function

The value of int_(0)^(2017)sin(x-[x])dx : (where [ . ] denotes the greatest integer function) is equal to

The value of int_(e)[log_(pi)x]dx is (where [.] denotes the greatest integer function)

The value of int_(1)^(e^(6)) [(log x)/(3)] dx (where [.] denotes the greatest integer function) is (e^(a)-e^(b)) then the value of (a)/(b) is

int_(-10)^(0)(1(2[x])/(3x-[x])/(2[x])/(3x-[x]))dx is equal to (where [*] denotes greatest integer function.) is equal to (where [*] denotes greatest integer function.)