Home
Class 12
MATHS
Given f(x)=log[((1+x))/((1-x))]andg(x)=(...

Given `f(x)=log[((1+x))/((1-x))]andg(x)=((3x+x^(2)))/((1+3x^(2)))`, then what is `f[g(x)]` equal to ?

Promotional Banner

Similar Questions

Explore conceptually related problems

Given f(x)=log((1+x)/(1-x)) and g(x) = (3x+x^(3))/(1+3x^(2)) , then fog(x) is

If f(x)=log.(1+x)/(1-x) and g(x)=(3x+x^(3))/(1+3x^(2)) then (fog) (x)=

Given f(x)=log_(10)((1+x)/(1-x)) and g(x)=(3x+x^(3))/(1+3x^(2)) , then fog(x) equals

Given f(x)=log_(10)((1+x)/(1-x)) and g(x)=(3x+x^(3))/(1+3x^(2)) , then fog(x) equals

If f(x)=log((1+x)/(1-x))andg(x)=(3x+x^(3))/(1+3x^(2)) , then f(g(x)) is equal to :

If f(x)=log((1+x)/(1-x)) and g(x)=((3x+x^(3))/(1+3x^(2))) then f(g(x)) is equal to f(3x)(b)quad {f(x)}^(3) (c) 3f(x)(d)-f(x)

If f(x)=log((1+x)/(1-x))f(2(x)/(1+x^(2)))=2f(x)

If f(x)=log((1+x)/(1-x))a n dg(x)=((3x+x^3)/(1+3x^2)) , then f(g(x)) is equal to (a) f(3x) (b) {f(x)}^3 (c) 3f(x) (d) -f(x)