Home
Class 12
MATHS
Let an=sum(k=1)^n1/(k(n+1-k)), then for ...

Let `a_n=sum_(k=1)^n1/(k(n+1-k)),` then for `n >= 2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_(n)=sum_(k=1)^(n)(1)/(k(n+1-k)), then for n>=2

Let f(n)=sum_(k=1)^(n) k^2(n C_k)^ 2 then the value of f(5) equals

Let S_n=sum_(k=0)^n n/(n^2+k n+k^2) and T_n=sum_(k=0)^(n-1)n/(n^2+k n+k^2) ,for n=1,2,3,......., then

Let S_n=sum_(k=0)^n n/(n^2+k n+k^2) and T_n=sum_(k=0)^(n-1)n/(n^2+k n+k^2) ,for n=1,2,3,......., then

Let S_(n)=sum_(k=1)^(n)n/(n^(2)+kn+k^(2)) and T_(n)=sum_(k=0)^(n-1)n/(n^(2)+kn+k^(2)) for n=1,2,3, ………. Then

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

sum_(k =1)^(n) k(1 + 1/n)^(k -1) =

Let S_(n)=sum_(k=1)^(n) (n)/(n^(2)+nk+k^(2)) and T_(n)=sum_(k=0)^(n-1)(n)/(n^(2)+nk+k^(2)) for n= 1,2,3..., then