Home
Class 12
MATHS
f(x)=1+[cosx]x,"in "0ltxle(pi)/(2)...

`f(x)=1+[cosx]x,"in "0ltxle(pi)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

If secxcos5x+1=0,"where "0ltxle(pi)/(2) , then find the value of x.

Solve : sec x cos 5x+1=0 , where 0ltxle(pi)/(2) .

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{x^(2),2^(x)} ,then if x in (0,1) , f(x)=

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{x^(2),2^(x)} ,then if x in (0,1) , f(x)=

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{(1)/(2),sinx} , then f(x)=(1)/(2) is defined when x in

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{(1)/(2),sinx} , then f(x)=(1)/(2) is defined when x in

If secxcos5x+1=0 , where 0ltxle(pi)/(2) , then find the value of x.

If secxcos5x+1=0 , where 0ltxle(pi)/(2) , then find the value of x.

Let f(x)={{:((x^p)/((sinx)q')),(0):}" if " 0ltxle(pi)/(2),(p,qinR) if x=0. Then Lagrange's mean value theorem is applicable to f(x) in closed interval [0,x].