Home
Class 12
MATHS
The maximum value of f(x) =2x^3-21x^2+36...

The maximum value of `f(x) =2x^3-21x^2+36x+20` , in the interval `0 le x le 2 ` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=2x^(3)-21x^(2)+36x-20 , then

The maximum value of f(x) = 2x^(3) -21 x^(2) +36x +20 in 0 le x le 2

If f(x)=2x^(3)-21 x^(2)+36x-20 , then

The maximum value of the function ƒ(x) = e^x + x ln x on the interval 1 le x le 2 is

Find the absolute maximum and absolute minimum of f(x) = 2x^(3) - 3x^(2) - 36x + 2 on the interval [0, 5].

If f(x)=|x-3|+|x-4| , then in the interval 0 le x le 5 , the function f(x) is -

Determine the average value of y=2x+3 in the interval 0 le x le 1 .

Determine the average value of y=2x+3 in the interval 0 le x le 1 .

Determine the average value of y=2x+3 in the interval 0 le x le 1 .