Home
Class 9
MATHS
1/(x+1)+2/(x+2)=4/(x+4) , x!=-1 , x!=-2 ...

`1/(x+1)+2/(x+2)=4/(x+4) , x!=-1 , x!=-2 , x!=-4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x : 1/(x+1)+2/(x+2)=4/(x+4) , x!=1, -2, -4

Solve for x : 1/(x+1)+2/(x+2)=4/(x+4),\ \ x!=1,\ -2,\ -4

Solve for x:(1)/(x+1)+(2)/(x+2)=(4)/(x+4),quad x!=1,-2,-4

Solve for x : (x-1)/(x-2)+(x-3)/(x-4)=3 1/3;\ \ x!=2,\ 4

((4x-3) / (2x + 1))-10 ((2x + 1) / (4x-3)) = 3, x! =-1/2, 3/4

(x+4)/ ((x^(2)-4)(x+1))

Without expanding, find the value of: (i) (x + 1)^4 - 4(x + 1)^3 (x - 1) + 6(x + 1)^2 (x - 1)^2 - 4(x + 1) (x - 1)^3 + (x -1)^4 (ii) (2x - 1)^4 + 4(2x - 1)^3 (3 - 2x) + 6(2x - 1)^2 (3 - 2x)^2 + 4(2x - 1) (3 - 2x)^3 + (3 - 2x)^4

The factor of x^8 + x^4 +1 are (A) (x^4 + 1 - x^2), (x^2 +1 +x), (x^2 + 1 - x ) (B) x^4 + 1 -x^2 , (x^2 - 1 + x), (x^2 +1 + x) (C ) (x^4 - 1 + x^2, (x^2 - 1 + x), (x^2 + 1 + x) (D) (x^4 -1 + x^2), (x^2 + 1 - x), (x^2 + 1 +x)