Home
Class 9
MATHS
If a=-1,b=2,c=3," then"(a^(3)+b^(3)+c^(3...

If `a=-1,b=2,c=3," then"(a^(3)+b^(3)+c^(3)-3abc)/((a-b)^(2)+(b-c)^(2)+(c-a)^(2))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a= 25, b= 15, c= - 10 then (a^(3) + b^(3) + c^(3) - 3abc)/((a-b)^(2) + (b-c)^(2) + (c-a)^(2))

a^(3)+b^(3)+c^(3)-3abc=k(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] , then k=

Prove: a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}

Prove that a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}

Prove that: a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){a-b)^(2)+(b-c)^(2)+(c-a)^(2)}

Verify : a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)]

Using a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)

Prove that a^3+b^3+c^3-3abc=1/2(a+b+c){(a-b)^2+(b-c)^2+(c-a)^2}