Home
Class 12
MATHS
Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) ...

Let `f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3)))` and `g(x)` be the inverse of `f(x)`. Then the value of `4 (g''(x))/(g(x)^(2))` is________.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) andg(x) be the inverse of f(x). Then the value of 4(g'(x))/((g(x))^(2))is_(--)

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g be the inverse of f. Then,the value of g'(x) is

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4)) and g be the inverse of f. Then , the value of g'(0) is

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g be the inverse of f then the value of g^(')(0) is

Let f(x)=int_0^x(dt)/(sqrt(1+t^3))a n dg(x) be the inverse of f(x) . Then the value of 4(g^(primeprime)(x))/((g(x))^2)i s____

Let f(x)=int_(4)^(x)(dt)/(sqrt(1+t^(3))) and g be the inverse of f ,then the value of g'(0) is equal to

Let f(x)=int_(x)^(3)(dt)/(sqrt(1+t^(5))) and g be the inverse of f. Then the value of g'(0) is equal to

Let f(x) = int_2^(x) (dt)/(sqrt(1+t^(4))) and g be the inverse of f. Then g^('1)(0) =