Home
Class 12
MATHS
The vertices of a triangle are (ab, 1/(a...

The vertices of a triangle are `(ab, 1/(ab)), (bc, 1/(bc)), (ca, 1/(ca))` where `a,b,c` are roots of the equation `x^3 - 3x^2 + 6x +1 = 0` then centroid is

Promotional Banner

Similar Questions

Explore conceptually related problems

|{:(1,a,bc),(1,b,ca),(1,c,ab):}|

|(1,bc,bc(b+c)),(1,ca,ca(c+a)),(1,ab,ab(a+b))|=

Prove that x^((b-c)/(bc)) x^((c-a)/(ca)) x^((a-b)/(ab))=1

Verify that (ab+ bc) (ab- bc) + (bc+ ca) (bc- ca) + (ca + ab) (ca- ab) = 0

Evaluate Delta -|(1,a,bc),(1,b,ca),(1,c,ab)|

Evaluate : triangle = |[1,a,bc],[1,b,ca],[1,c,ab]|

If a,b,c are the sides of a triangle ABC such that x^(2)-2(a+b+c)x+3 lambda(ab+bc+ca)=0 has real roots.then

Using the properties of determinants,prove det[[1,bc,bc(b+c)1,ca,ca(c+a)1,ab,ab(a+b)]]

|[bc, b+c, 1], [ca, c+a, 1], [ab, a+b, 1]|=?