Home
Class 12
MATHS
If x^p y^q = (x+y)^(p+q) find dy/dx...

If `x^p y^q = (x+y)^(p+q)` find dy/dx

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^py^q=(x+y)^(p+q) , then dy/dx= (a) x/y (b) y/x (c) x/(x+y) (d) y/(y+x)

If x^p y^q = (x+y)^(p+q) , then( d^2y)/(d x^2 ) =..........

If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

If x^p . y^q = (x + y)^(p + q) , show that (dy)/(dx) = y/x

If x^(p)y^(q)=(x+y)^(p+q) , find (d^()y)/(dx^()) .

If x^(p) + y^(q) = (x + y)^(p+q) , " then" (dy)/(dx) is

If x^(p) . y^(q) = (x+y)^(p+q) , then dy/dx is equal to