Home
Class 11
MATHS
(n!)/((n-r)!) = n(n-1)(n-2)...(n-(r-1))...

`(n!)/((n-r)!) = n(n-1)(n-2)...(n-(r-1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)

Prove that : (i) (n!)/(r!)=n(n-1)(n-2)...(r+1) (ii) (n-r+1)*(n!)/((n-r+1)!)=(n!)/((n-r)!) (iii) (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)=((n+1)!)/(r!(n-r+1)!)

If (1-x)^(-n)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(r)x^(r)+..., then a_(0)+a_(1)+a_(2)+...+a_(r) is equal to (n(n+1)(n+2)...(n+r))/(r!)((n+1)(n+2)...(n+r))/(r!)(n(n+1)(n+2)...(n+r-1))/(r!) none of these

If (1-x)^(-n)=a_0+a_1x+a_2x^2+...+a_r x^r+ ,t h e na_0+a_1+a_2+...+a_r is equal to (n(n+1)(n+2)(n+r))/(r !) ((n+1)(n+2)(n+r))/(r !) (n(n+1)(n+2)(n+r-1))/(r !) none of these

If (1-x)^(-n)=a_0+a_1x+a_2x^2++a_r x^r+ ,t h e na_0+a_1+a_2++a_r is equal to a. (n(n+1)(n+2)(n+r))/(r !) b. ((n+1)(n+2)(n+r))/(r !) c. (n(n+1)(n+2)(n+r-1))/(r !) d. none of these

If (1-x)^(-n)=a_0+a_1x+a_2x^2++a_r x^r+ ,t h e na_0+a_1+a_2++a_r is equal to (a) (n(n+1)(n+2)(n+r))/(r !) (b) ((n+1)(n+2)(n+r))/(r !) (c) (n(n+1)(n+2)(n+r-1))/(r !) (d)none of these

(ii) (n!)/((n-r)!r!)+(n!)/((n-r+1)!(r-1)!)=((n+1)!)/(r!(n-r+1)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)= ((n+1)!)/ (r!(n-r+1)!) .