Home
Class 11
MATHS
If matrix A=[a(ij)](2X2), where a(ij)=...

If matrix `A=[a_(ij)]_(2X2)`, where ` a_(ij)={[1,i!=j],[0,i=j]}, then A^2` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If matrix A=[a_(ij)]_(2xx2^(,)) where a_(ij)=1" if "i!=j =0" if "i=j then A^(2) is equal to :

if A=[a_(ij)]_(2*2) where a_(ij)={i+j , i!=j and i^2-2j ,i=j} then A^-1 is equal to

If matrix A=[a_(ij)]_(2x2), where a_(ij)={{:(1"," , i ne j),(0",", i=j):} then A^(3) is equal to

Construct a matrix [a_(ij)]_(2xx2) where a_(ij)=i+2j

If matrix A=[a_(ij)]_(2xx2) where a_(ij)={{:(2,i ne j),(0, i=j):} then write the matrix A.

If matrix A=([a_(ij)])_(2xx2), where a_(ij)={1,quad if quad i!=j0,quad if i+j, then A^(2) is equal to I( b) A(c)O(d)I

if A=[a_(ij)]_(2*2) where a_(ij)={i+j,i!=j and a_(ij)=i^(2)-2j,i=j then A^(-1) is equal to

If A=[a_(ij)]_(2xx2) where a_(ij)={{:(1",",if, I ne j),(0",", if,i=j):} then A^(2) is equal to

If A = [a_(ij)]_(2xx2) , where a_(ij) = ((i + 2j)^(2))/(2 ) , then A is equal to

A 2xx2 matrix A = [a_(ij)] , where a_(ij) = (i+j)^2 is