Home
Class 12
MATHS
OABC is a tetrahedron where O is the ori...

OABC is a tetrahedron where O is the origin and A,B,C have position vectors `veca,vecb,vecc` respectively prove that circumcentre of tetrahedron OABC is `(a^2(vecbxxvecc)+b^2(veccxxveca)+c^2(vecaxxvecb))/(2[veca vecb vecc])`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: [vecaxxvecb ,vecbxxvecc ,veccxxveca] = [veca vecb vecc]^2

Prove that [vecaxxvecb,vecbxxvecc,veccxxveca]=[veca,vecb,vecc]^(2)

A, B, C and D have position vectors veca, vecb, vecc and vecd , repectively, such that veca-vecb = 2(vecd-vecc) . Then

A, B, C and D have position vectors veca, vecb, vecc and vecd , repectively, such that veca-vecb = 2(vecd-vecc) . Then

A, B, C and D have position vectors veca, vecb, vecc and vecd , repectively, such that veca-vecb = 2(vecd-vecc) . Then

A, B, C and D have position vectors veca, vecb, vecc and vecd , repectively, such that veca-vecb = 2(vecd-vecc) . Then

Prove that [vecaxxvecb,vecbxxvecc,veccxxveca]=[veca,vecb,vecc]^(2) .

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])