Home
Class 11
MATHS
Evaluate: ("lim")(xrarr0) (sin[cosx])/(...

Evaluate: `("lim")_(xrarr0)` `(sin[cosx])/(1+[cosx])([dot]` denotes the greatest integer function).

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: (lim)_(x rarr0)(sin[cos x])/(1+[cos x])([.] denotes the greatest integer function).

lim_(xto0)(sin[cosx])/(1+[cosx]) , ([.] denotes the greatest integer function)

Evaluate lim_(xto0) (sin[cosx])/(1+[cosx]) ( [.] denotes the greatest integer function).

Evaluate lim_(xto0) (sin[cosx])/(1+[cosx]) ( [.] denotes the greatest integer function).

Evaluate: ("lim")_(xrarr0)(cosx)^(cotx)

("lim")_(x→0^+)("sin"[cosx])/(1-[cosx]) ([.] denotes the greatest integer function) is equal to equal to 1 (b) equal to 0 does not exist (d) none of these

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

lim_(x->0)(sin[sec^2x])/(1+[cosx]), where [*] denotes greatest integral function, is

Evaluate: lim_(xrarr0)(e^(x^2)-cosx)/x^2