Home
Class 11
MATHS
If cos 2x gt |sinx| and x in (-pi/2,pi) ...

If `cos 2x gt |sinx| and x in (-pi/2,pi)` then x

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos 2x gt |sinx|, x in (-(pi)/2,pi) then x in

Solve cos2xgt|sinx|,x in(-(pi)/(2),pi)

Solve cos2xgt|sinx|,x in(-(pi)/(2),pi)

Solve cos2xgt|sinx|,x in(-(pi)/(2),pi)

Solve: cos 2x gt | sin x| x in [-pi,pi] .

Solve cos2x >|sinx|,x in (pi/2,pi)

Solve cos2x >|sinx|,x in (pi/2,pi)

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)