Home
Class 11
MATHS
In DeltaABC, (sinA)(sinC) = (sin(A-B))/(...

In `DeltaABC`, `(sinA)(sinC) = (sin(A-B))/(sin(B-C))`, prove that `a^(2),b^(2),c^(2)` are in A.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) , prove that a^(2), b^(2), c^(2) are in A.P.

If (sin A)/(sin C)=(sin(A-B))/(sin(B-C)), prove that a^(2),b^(2),c^(2) are in A.P.

In DeltaABC,(sinA)/(sinC)=(sin(A-B))/(sin(B-C)) then prove that a^(2),b^(2),c^(2) are in A.P.

If in a hat harr ABC,(sin A)/(sin C)=(sin(A-B))/(sin(B-C)), prove that a^(2),b^(2),c^(2) are in A.P.

If (sin A)/(sin C) = (sin (A-B))/(sin (B-C)) , then show that, a^(2), b^(2), c^(2) are in A.P.

In DeltaABC if (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) , then a^(2), b^(2), c^(2) are in :

In DeltaABC if (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) , then a^(2), b^(2), c^(2) are in :

In a triangle ABC , if (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) . Prove that a^2,b^2,c^2 are in A.P.

If in a A B C ,(sinA)/(sinC)=(sin(A-B))/(sin(B-C) , prove that a^2,b^2,c^2 are in AdotPdot

If sinA : sinC = sin(A-B): sin(B-C) prove that a^2,b^2,c^2 are in A.P.