Home
Class 12
MATHS
If x=(1.3)/(3.6)+(1.3.5)/(3.6.9)+(1.3.5....

If `x=(1.3)/(3.6)+(1.3.5)/(3.6.9)+(1.3.5.7)/(3.6.9.12)+....` then prove that `9x^(2)+24x=11`.

Promotional Banner

Similar Questions

Explore conceptually related problems

(5)/(3.6)+(5.7)/(3.6.9)+(5.7.9)/(3.6.9.12)-…....=

(3) / (6) + (3.5) / (6.9) + (3.5.7) / (6.9.1.2) + .... oo =

(3) / (6) + (3.5) / (6.9) + (3.5.7) / (6.9 * 12) + ..... prop =

If x=(1)/(3)+(1.3)/(3.6)+(1.3.5)/(3.6.9)+…. , then x^2+2x-2=

The sum of the infinite series 1+(1)/(3)+(1.3)/(3.6)+(1.3.5)/(3.6.9)+(1.3.5.7)/(3.6.9.12)+... is equal to

If x = (1*3)/(3*6)+(1*3*5)/(3*6*9)+(1*3*5*7)/(3*6*9*12)+. . . to infinite terms, then 9x^(2) + 24 x =

If x = (1*3)/(3*6)+(1*3*5)/(3*6*9)+(1*3*5*7)/(3*6*9*12)+. . . to infinite terms, then 9x^(2) + 24 x =