Home
Class 12
MATHS
y = tan^(-1)((3x-x^3)/(1-3x^2)), 1/(sqrt...

`y = tan^(-1)((3x-x^3)/(1-3x^2)), 1/(sqrt3) , x , 1/(sqrt3)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x: tan^-1((3x-x^3) / (1-3x^2)),-1/sqrt3 < x < 1/sqrt3

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , if -1/(sqrt(3))

If y=tan^(-1)((3x-x^(3))/(1-3x^(2))),(1)/(sqrt(3))

Find (dy)/(dx) , if y = tan^(-1) ((3x - x^3)/(1 - 3x^2)) , (-1)/(sqrt3) lt x lt 1/(sqrt(3))

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

Find (dy)/(dx) in the following: y= tan^(-1) ((3x-x^(3))/(1-3x^(2))), |x| < (1)/(sqrt3)

Find dy/dx in the following : y=tan^(-1)((3x-x^(3))/(1-3x^(2))),-1/sqrt3ltxlt1/sqrt3