Home
Class 12
MATHS
If x = theta -(1)/(theta) , y = theta + ...

If `x = theta -(1)/(theta) , y = theta + (1)/(theta)` then` (dy)/(dx) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=theta-(1)/(theta) and y=theta+(1)/(theta), then (dy)/(dx)

If x=theta-(1)/(theta)" and "y=theta+(1)/(theta)," then: "(d^(2)y)/(dx^(2))=

If x = a (1-cos theta) , y = a ( theta + sin theta) then (dy)/(dx) at theta = pi/2 is

If x=e^(theta)(theta+(1)/(theta)),y = e^(-theta)(theta-( 1)/(theta)) then (dy)/(dx)

If x = a Sin 2 theta (1+Cos2 theta) , y = b Cos2 theta (1-Cos2 theta) , then (dy)/(dx) =

If x = a (theta + sin theta), y = b (1+ cos theta), then (dy)/(dx)" at "theta = (pi)/(2) is:

If x=a ( theta -sin theta ) ,y=a(1-cos theta ) ,then (dy)/(dx) =

If x=e^(theta)(theta+(1)/(theta)),y=e^(-theta)(theta-(1)/(theta)) , then find (dy)/(dx) .

If x =a (cos theta + theta sin theta ), y =a (sin theta - theta cos theta ) then (dy)/(dx) =

x=a sin2 theta(1+cos2 theta), y=b cos2 theta(1-cos2 theta) then (dy)/(dx)=