Home
Class 12
MATHS
If I(n)=int(0)^(pi/2) sin^(x)x dx, then ...

If `I_(n)=int_(0)^(pi/2) sin^(x)x dx`, then show that `I_(n)=((n-1)n)I_(n-2)`.
Hence prove that
`I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi/2) sin^(n)x dx , then show that I_(n)=((n-1)n)I_(n-2) . Hence prove that I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}

If I_(n)=int_(0)^(pi/2) sin^(n)x dx , then show that I_(n)=((n-1)n)I_(n-2) . Hence prove that I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}

If I_(n)=int_(0)^( pi/4)tan^(n)xdx, prove that I_(n)+I_(n-2)=(1)/(n+1)

If I_(n) = int_0^(pi/2) sin^(n)x dx then I_(n)/(I_(n-2)) =

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

If I_n=int_0^(pi//4)tan^("n")x dx , prove that I_n+I_(n-2)=1/(n-1)dot

If I_(n) = int sin^(n)x dx , then nI_(n)-(n-1)I_(n-2)=

If I_(n) = int_0^(pi/4) tan^(n)x dx , then n(I_(n-1)+I_(n+1)) =

If I_(n) = int (sin nx)/(cosx)dx , prove that I_(n)=-(2)/(n-1)cos(n-1)x-I_(n-2)

If I_(n)=int_(0)^(pi//4) tan^(n)theta d theta for 1,2,3,… then I_(n-1)+I_(n+1)=